If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-25y+10=0
a = 1; b = -25; c = +10;
Δ = b2-4ac
Δ = -252-4·1·10
Δ = 585
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{585}=\sqrt{9*65}=\sqrt{9}*\sqrt{65}=3\sqrt{65}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-3\sqrt{65}}{2*1}=\frac{25-3\sqrt{65}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+3\sqrt{65}}{2*1}=\frac{25+3\sqrt{65}}{2} $
| 99=d+29 | | 3x-6=6x-96 | | 6/y=13.3 | | +104=8x | | 2/7n-13=-14 | | 10x-4x=66 | | 2(x-$5.00)=$16.00 | | 6x-20=62+4x | | 83=p+19 | | 5a+2=2a+17 | | 1.2x-6=0.8x+18 | | 80=(-g)+89 | | 5.6x-2.6=31 | | x+17=-x+21 | | x-3/7=15/14 | | 4x-3=29-2x | | 5x+10=2x+5 | | (3m^2)^3(2^2)^3=0 | | 9/4-k/3=5/12 | | 15x+12=-3x+48 | | 20=d+18 | | 1/5-z/6=7/30 | | x.75=9 | | X^2+196x-676=0 | | (x-3)/3-(x+3)/3=1 | | 4k+3=14 | | z/3+7=−2 | | 2d-8d-(-11d)-5d-(-17d)-(-5)=-12 | | f+17/27=23 | | 21/2x=15 | | (18-x)/2=1 | | 6j-5j=18 |